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Resumo: O método de Lattice Boltzmann (LB) tem atraído muita atenção nos últimos anos para simulação de 

escoamentos isotérmicos e não-isotérmicos. Os problemas envolvendo escoamentos multifásicos tem sido tratados 

com este método segundo diferentes metodologias. Neste artigo, emprega-se o método LB para simulação 

tridimensional de uma bolha isotérmica ascendente em um meio líquido. Inicialmente, o método numérico é 

descrito e explicado. Posteriormente o mesmo é empregado para simular o problema de uma bolha estática, 

evidenciando a presença de velocidades espúrias (não-nulas) próximas à interface. Posteriormente, simula-se o 

problema da bolha ascendente em um meio líquido por ação da força de empuxo. Os resultados demonstram a 

capacidade do método em simular o problema da ascensão de uma bolha isotérmica em um meio líquido. 
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Introdução 

Nas últimas décadas, o método de Lattice Boltzmann surgiu como uma técnica nova e efetiva 

para simulações de escoamento de fluidos e transferência de calor, como em Wolf-Gladrow (2000), 

Chen e Doolen (1998), He e Luo (1997), Hou et al (1995), Lai et al (2001), Guo et al (2002) e Kamali 

e Van den Akker (2013). Dentre as vantagens do método sobre as técnicas tradicionais de dinâmica dos 

fluidos computacional podem ser citadas a facilidade de paralelização, a redução do custo computacional 

envolvido na correção da pressão via equação de Laplace e a facilidade de captura de interfaces. Como 

desvantagens citam-se a limitação do incremento de tempo (por se tratar de um método explícito no 

tempo) e a degradação da estabilidade do método para valores baixos ou elevados do parâmetro de 

relaxação temporal. 

Neste artigo são realizadas simulações da ascensão de uma bolha isotérmica em um meio líquido 

utilizando o método LB, com base no modelo dos pseudo-potenciais. 

 

Modelo matemático e método numérico  
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De acordo com Huang et al. (2015), a equação da evolução da função de distribuição das 

partículas no método LB usa-se comumente considerando o operador de colisões simplificado de BGK, 

no qual as colisões se concebem como um processo simples de relaxação com uma constante de tempo 

: 
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em que fi(x,t) é a função de distribuição de partículas com velocidade ei na posição x e no tempo t,  é a 

tempo de relaxação e fi
eq(x,t) é a função de distribuição de equilíbrio correspondente, dada por: 
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sendo wi os coeficientes de ponderação, u o vetor velocidade do fluido (não o real), cs a velocidade do 

som associada ao esquema selecionado.  

Neste artigo, para simulação tridimensional, emprega-se o esquema D3Q19 (3 direções e 19 

velocidades). Assim tem-se cs
2=1/3 e os coeficientes de ponderação são dados por: 
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Uma representação esquemática do esquema D319 é mostrada na Figura 1: 

 
Figura 1: Esquema D3Q19 (Huang et al, 2015) 

 

Com a obtenção da função de distribuição de Boltzmann na forma discreta, fi, pode-se obter o 

campo de densidades, , e de velocidades, u, pelas Equações (4) e (5), respectivamente: 
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O método dos pseudopotenciais, de acordo com Yuan e Schaefer (2006) simula a separação entre 

as fases líquido-vapor por meio da utilização de uma força repulsiva entre partículas, dada pela Equação 

(6): 

      iiint eexxxF ttwtgt
i

i ,,,    ,           (6) 

em que (x,t)  representa o pontencial médio de campo e g é um parâmetro que controla a intensidade 

da força entre as partículas. 

O potencial médio de campo é obtido pela Equação (7): 
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Para o cálculo do potencial médio de campo, emprega-se uma Equação de Estado para o cálculo 

da pressão. Diferentes equações podem ser utilizadas. Neste trabalho foi utilizada a Equação de 

Carnahan e Starling (1969): 
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onde a=0,4963R2Tc
2/pc e b=0,187RTc/pc. Para as simulações realizadas neste artigo, foram admitidos 

a=1, b=4, R=1, recomendados por Yuan e Schaefer (2006). 

Para condição de equilíbrio de uma bolha estática em um meio, a tensão superficial faz com que 

a bolha permaneça esférica. Neste caso é possível calcular o salto de pressão que existe entre o interior 

da bolha e o meio líquido pela Equação de Young-Laplace: 

 

R
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O movimento ascendente em um meio líquido ocorre devido à ação da força de empuxo. Esta 

força foi introduzida pela Equação (9), de acordo com Yuan e Schaefer (2006): 

 

  GgF ,                     (10) 

 

em que G representa a aceleração da gravidade e   representa a densidade média, que é calculada 

considerando todo o domínio computacional. 

A velocidade de equilíbrio, ueq, é calculada incluindo-se o efeito da aceleração gerado pela força 

total, F=Fint+Fg: 
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De acordo com Yuan e Schaefer (2006), a velocidade real do fluido, U, é dada por: 
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Por meio da expansão de Chapman-Enskog, conforme Guo e Shu (2013), demonstra-se a relação 

entre as escalas macroscópica e mesoscópica, ou seja, a relação entre a viscosidade e a relaxação 

temporal: 

 

 5,02   sc ,                     (13) 

 

Assim, a escolha do parâmetro de relaxação temporal define a viscosidade cinemática. Uma 

simples análise da Equação 13 revela que ≥ 0,5. Logo, o operador de colisão BGK possui a limitação 

de simular somente problemas de baixos números de Reynolds. 

 

Resultados e discussão 

Para todas as simulações realizadas foi considerada a temperatura do fluido igual a T/Tc=0,75. 

Nesta condição as densidades das fases líquida e vapor são iguais a 0,33 e 0,015, respectivamente. Estas 

densidades são obtidas por meio da Equação de Estado utilizada (Equação (8)). Convém ressaltar que 

as variáveis utilizadas nas simulações estão em unidades de lattice, seguindo a metodologia de Gong e 

Cheng (2012). Condições de contorno periódicas foram implementadas em todas as direções, conforme 

Guo e Shu (2013). As bolhas foram inicializadas com um diâmetro de 30 (em unidades de lattice). Estas 

podem ser convenientemente convertidas para unidades do sistema internacional (ou outro conveniente) 

por meio das respetivas grandezas expressas na forma reduzida, ou seja, utilizando as propriedades 

críticas. Inicialmente foram realizadas simulações de uma bolha estática imersa em um meio líquido. 

Trata-se de um problema teste típico na simulação de problemas bifásicos. Neste caso, espera-se que a 

bolha estática permaneça em repouso no meio líquido. Adotou-se relação temporal unitária, ou seja, 

1 . O domínio computacional foi estabelecido com uma malha uniforme com 51x51x81 nós para 

simulação da bolha estática e 51x51x151 nós para simulação da ascensão da bolha. 

O objetivo destas simulações é abordar uma característica da simulação numérica de problemas 

bifásicos utilizando-se o método dos pseudopotenciais: a presença de velocidade não-nula nas 

proximidades da interface (velocidades espúrias). A presença de velocidades espúrias na região da 

interface deve-se ao desbalanceamento da tensão superficial e surge em métodos numéricos utilizados 

na simulação deste tipo de problema. 

 
Figura 2: distribuição de densidades (a), velocidade na direção Z (b) e pressão (c) para a bolha estática 

 

O campo de pressões apresentado na Figura 2 permite a obtenção da tensão superficial associada 

à bolha. Assim, pela Figura 2c, a tensão superficial  (em unidades de lattice) é igual a 0,075. Esta é 
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inclusive uma característica do modelo dos pseudopotenciais: a tensão superficial é obtida somente a 

posteri à simulação numérica. Isso ocorre pela impossibilidade de se ajustar a tensão superficial de modo 

independente da força entre partículas, Fint, dada pela Equação (6). 

Posteriormente foram realizadas simulações numéricas de uma bolha ascendente em um meio 

líquido. Neste caso, a aceleração da gravidade G foi assumida igual a 0,0003 (em unidades de lattice), 

conforme Gong e Cheng (2012). A Figura 3 apresenta a distribuição de densidades para diferentes 

instantes de tempo (t=0, t=50 s e t=100 s): 
 

 
Figura 3: distribuição de densidades para a ascenção da bolha para diferentes instantes de tempo 

Em relação à Figura 3, nota-se que a forma da bolha não se altera durante a ascensão, ou seja, 

permanece esférica. Isso resulta do predomínio das forças de tensão superficial ou forças viscosas em 

comparação com as forças de inércia.  

A Figura 4 apresenta o campo de velocidades para a simulação da ascensão de uma bolha. A partir 

dos resultados, pode-se definir o número de Reynolds para a simulação da ascensão da bolha. Tomando-

se a velocidade máxima obtida (veja Figura 4) como a velocidade característica, o diâmetro da bolha e 

a viscosidade cinemática (veja Equação (13)) obtém-se Re=5,4. Este resultado confirma o fato da forma 

da bolha ter sido esférica. 
 

 
Figura 4: distribuição de velocidades para a ascenção da bolha (a) t=0 s (b) t=50 s (c) t=100 s 

Conclusões 
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